Mohamed Aziz Boukraa
Unité de Mathématiques Appliquées (UMA)
Postdoctorant
I am currently a postdoctoral researcher at the IDEFIX team, involved in a collaborative research project with EDF. My work focuses on interface imaging problems arising in electricity production sites. The primary case study involves the imaging of the interface between the concrete of a dam and the rock on which it is built, using non-destructive seismic waves. During my PhD thesis, I was interested in solving an inverse problem in thin plate theory, governed by the biharmonic operator, using the fading regularization method and plate finite elements.
HAL Publications
-
Fading regularization method for an inverse boundary value problem associated with the biharmonic equation
Article dans une revue Published on 26/09/2024 co-written by Mohamed Aziz Boukraa, Laëtitia Caillé, Franck Delvare -
High-Resolution Seismic Imaging for Dam-Rock Interface using Full-Waveform Inversion
Communication dans un congrès Published on 30/06/2024 co-written by Mohamed Aziz Boukraa, Lorenzo Audibert, Marcella Bonazzoli, Houssem Haddar, Denis Vautrin -
Imaging a dam-rock interface with inversion of a full elastic-acoustic model
Communication dans un congrès Published on 23/06/2024 co-written by Mohamed Aziz Boukraa, Marcella Bonazzoli, Houssem Haddar, Lorenzo Audibert, Denis Vautrin -
Imagerie d’interface barrage-fondation par inversion de forme d'onde complète
Communication dans un congrès Published on 26/03/2024 co-written by Mohamed Aziz Boukraa, Lorenzo Audibert, Marcella Bonazzoli, Houssem Haddar, Denis Vautrin -
Fading regularization FEM algorithms for the Cauchy problem associated with the two‐dimensional biharmonic equation
Article dans une revue Published on 20/09/2022 co-written by Mohamed Aziz Boukraa, Saber Amdouni, Franck Delvare -
Fading regularization method and DKQ plate elements for the Cauchy problem associated with the biharmonic equation
Poster de conférence Published on 13/06/2022 co-written by Mohamed Aziz Boukraa, Franck Delvare -
Méthodes inverses à régularisation évanescente pour l'identification de conditions aux limites en théorie des plaques minces
Thèse Published on 14/12/2021 by Mohamed Aziz Boukraa -
Méthode de régularisation évanescente pour le problème de Cauchy associé à l'équation biharmonique
Poster de conférence Published on 18/10/2019 co-written by Mohamed Aziz Boukraa, Franck Delvare